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Abstract—This manuscript provides an approach to solve the
nonlinear least squares problem that arises in decentralized
fusion. Even though almost all sensor noise can be modeled
as additive noise, the additive nature of the measurement noise
is lost when the signal is processed at the sensor node. The
proposed approach employs the unscented transformation before
the estimation problem at the central node is posed as a
nonlinear least squares problem. Numerical simulations indicate
that the proposed unscented transformation based approach
yields desired results.
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I. INTRODUCTION

This manuscript provides an unscented approach to the

nonlinear least squares problem that arises in decentralized

fusion [1] where only the processed signal is sent to the central

node as oppose to the raw measurements. Due to the signal

processing conducted at the sensor node, one might loose

the additive nature of the measurement noise. For example,

consider the ith sensor observations of the following form

ỹi = f(x̃) + vi (1)

where ỹi ∈ ℜm are the measurements, x̃ ∈ ℜn are the ground

truth quantities (or parameters) of interest, and vi ∈ ℜm

indicates the additive measurement noise. In a decentralized

approach, the measurements obtained at the sensor node are

first processed before they are relayed to a central processing

node. Let z̃i ∈ ℜr be the processed signal that is sent to the

central node from the ith sensor, i.e.,

z̃i = hi (ỹi) = hi (f(x̃) + vi) + wi (2)

where wi ∈ ℜr indicates some additive noise. In general, the

nature of the nonlinear function hi(·) can change for each

sensor. At the central node, the measurements from N sensor

nodes are fused to yield a superior estimate of the quantity of

interest. In least squares approach, the estimates are obtained

as the hypothesized parameters that minimize the least squares

cost function,

x̂ = argmin
x

J(x) (3)

where

J(x) =
1

2N

N
∑

i=1

{z̃i − ẑi(x)}T {z̃i − ẑi(x)} (4)

where ẑi(x) indicates the estimated processed signal for the

hypothesized parameter x. Even though the estimation criteria

given in (4) can be modified such that the residuals are

weighted to yield a weighted least squares approach [2], here

we only consider the simple least squares. For traditional least

squares, the measurement is such that the additive noise term

appears outside the nonlinear function, i.e., z̃i = hi(f(x̃)) +
wi. Then the best choice for the estimated processed signal

for hypothesized x is

ẑi(x) = hi (f(x)) (5)

Now, the minimization of (4) is equivalent to the calculation

of the maximum likelihood (ML) estimate of x, given that

(4) is a weighted least squares cost function. For general

nonlinear mappings hi(·), there exists no systematic approach

to select ẑi(x). Once a proper expression for the predicted

processed measurement is selected for the hypothesized x,

one can choose several traditional approaches to minimize

(4). Two examples of these traditional approaches include the

zero-order function minimization schemes, such as the simplex

algorithm, and the first-order steepest decent approaches, such

as the iterative linear least squares. As presented in this paper,

the performance of these approaches depends on the mappings

hi(·) and the predicted processed measurement expression,

ẑi(x), selected.

This paper presents an unscented transformation [3]–[5]

based approach to the nonlinear least squares problem that

arises in decentralized data fusion. The proposed approach

can be used to improve the solution to the nonlinear least

squares problem in (4). Proposed unscented transformation

based approach utilizes the sigma points to represent ẑi(x)1.

Detailed formulation and analysis of the proposed approach

are presented in section II. Numerical simulations are given

in section III to validate the proposed approach and the

concluding remarks are presented in section IV.

II. PROPOSED APPROACH

For simplicity of presentation, the formulation of the pro-

posed approach and the performance analysis in this section

are described for a one-dimensional scenario. Furthermore, the

nonlinear mappings are considered to be equivalent for each

1Please refer to Appendix I for a brief overview for the unscented
transformation.
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sensor. Overall, the mapping is hi(·) = h(·), and as a result,

ẑi(·) = ẑ(·). Consider an observation equation of the form

ỹ = f(x̃) + v (6)

It is assumed, the measurement noise is uncorrelated, zero-

mean Gaussian noise with known variance, i.e., v ∼ N (0, σ2
v).

The sensor node processing can be written as

z̃ = h(f(x̃) + v) + w (7)

where w ∼ N (0, σ2
w). Now the problem of interest can be

formulated as a nonlinear least squares problem where the

cost function to minimize is

J(x) =
1

2N

N
∑

i=1

{z̃i − ẑ(x)}2
(8)

In the cost function, z̃i indicates the individual sensor outputs,

i.e.,

z̃i = h (f(x̃) + vi) + wi (9)

In a traditional approach, a zeroth-order approximation is used

to obtain ẑ(x) as

ẑ(x) = h(f(x)) (10)

Substituting (10) and (9) into (8) yields the cost function

J1(x) =
1

2N

N
∑

i=1

{h(f(x̃) + vi) + wi − h(f(x))}2
(11)

Let y = f(x), and ∆y = f(x̃) − f(x). Now the above cost

function may be written as

J1(x) =
1

2N

N
∑

i=1

{h(y + ∆y + vi) + wi − h(y)}2

=
1

2N

N
∑

i=1

{

h(y) + h′(y)(∆y + vi) +
h′′(y)

2!
(∆y + vi)

2+

h′′′(y)

3!
(∆y + vi)

3 + . . . − h(y) + wi

}2

That is, in the traditional approach, the cost function becomes

J1(x) =
1

2N

N
∑

i=1

{

wi + h′(y)(∆y + vi) +
h′′(y)

2!
(∆y + vi)

2

+
h′′′(y)

3!
(∆y + vi)

3 + . . .

}2

(12)

The unscented transformation based approach proposed here

uses the sigmapoints2 to approximate ẑ(x), i.e.,

ẑ(x) =
2

3
h(f(x)) +

1

6
h(f(x) +

√
3σv) +

1

6
h(f(x) −

√
3σv)

(13)

2Please refer to Appendix I.

Note that here we do not consider sigma points for w since it

is assumed to be a zero mean Gaussian variable which appears

linearly in z̃. Substituting (13) and (9) into (8) yields

J2(x) =
1

2N

N
∑

i=1

{

h(f(x̃) + vi) + wi −
2

3
h(f(x))−

1

6
h(f(x) +

√
3σv) − 1

6
h(f(x) −

√
3σv)

}2
(14)

Using the following Taylor series approximations

h(f(x) +
√

3σv) = h(y) + h′(y)(
√

3σv)+

h′′(y)

2!
(
√

3σv)2 +
h′′′(y)

3!
(
√

3σv)3 + . . .

h(f(x) −
√

3σv) = h(y) − h′(y)(
√

3σv)+

h′′(y)

2!
(
√

3σv)2 − h′′′(y)

3!
(
√

3σv)3 + . . .

yields

J2(x) =
1

2N

N
∑

i=1

{

h(y) + h′(y)(∆y + vi) +
h′′(y)

2!
(∆y + vi)

2

+
h′′′(y)

3!
(∆y + vi)

3 + . . . − 2

3
h(y)

− 1

6

[

h(y) + h′(y)(
√

3σv) +
h′′(y)

2!
(
√

3σv)2

+
h′′′(y)

3!
(
√

3σv)3 + . . .

]

− 1

6

[

h(y) − h′(y)(
√

3σv) +
h′′(y)

2!
(
√

3σv)2

−h′′′(y)

3!
(
√

3σv)3 + . . .

]

+ wi

}2

Thus, for the proposed approach, the cost function becomes

J2(x) =
1

2N

N
∑

i=1

{

wi + h′(y)(∆y + vi) +
h′′(y)

2!
(∆y + vi)

2

+
h′′′(y)

3!
(∆y + vi)

3 + . . . − 1

3

[

h′′(y)

2!
(
√

3σv)
2

+
h(4)(y)

4!
(
√

3σv)4 +
h(6)(y)

6!
(
√

3σv)6 + . . .

]

}2

(15)

The accuracy of the least squares solution depends on which

approximation of ẑ(x) is used in the cost function. The

material presented in rest of this section aims to argue that the

unscented transformation based approximation given in (13)

should yield a superior solution when compared to that of the

traditional approximation given in (10).

Lemma 1. For the least squares problem given in (8), the

optimal ẑ(x) approaches E[z̃] as N → ∞.

Proof: The first derivative of (8) is given by

∂J

∂x
=

1

N

N
∑

i=1

{ẑ(x) − z̃i}
∂ẑ

∂x

2



and

∂J

∂x
(x) = 0 ⇒ ẑ(x) =

1

N

N
∑

i=1

z̃i

satisfies the necessary and the sufficient condition for optimal-

ity. Now based on the law of large numbers [6], [7],

lim
N→∞

1

N

N
∑

i=1

z̃i = E[z̃]

Thus the optimal ẑ(x) asymptotically approaches E[z̃], i.e.,

lim
N→∞

ẑ(x) = E[z̃]

There exists no exact analytical representation for evaluating

E[h(ỹ)] for a generic nonlinear mapping, h(·). Following the

same argument given in [8], it can be shown that the unscented

transformation approximation given in (13) is more accurate

than the first-order approximation given in (10) when the

estimation errors are ignored, i.e., x = x̃. When x = x̃,

∆y = 0 and E[z̃] can be written as

E[z̃] = h(y)+
h′′(y)

2!
σ2

v +
h(4)(y)

4!
3σ4

v+

h(6)(y)

6!
15σ6

v +
h(8)(y)

8!
105σ8

v + . . .

Using the Taylor series expansion, the unscented transforma-

tion approximation can be written as

2

3
h(f(x)) +

1

6
h(f(x) +

√
3σv) +

1

6
h(f(x) −

√
3σv) =

h(f(x)) +
h′′(y)

2!
σ2

v +
h(4)(y)

4!
3σ4

v +
h(6)(y)

6!
32σ6

v

+
h(8)(y)

8!
33σ8

v +
h(10)(y)

10!
34σ10

v + . . .

Now the difference between the true expectation and the

unscented transformation approximation can be written as

E[z̃] −
{

2

3
h(f(x)) +

1

6
h(f(x) +

√
3σv)+

1

6
h(f(x) −

√
3σv)

}

=
h(6)(y)

6!
(15 − 32)σ6

v+

h(8)(y)

8!
(105 − 33)σ8

v +
h(10)(y)

10!
(945 − 34)σ10

v + . . .

Also, the difference between the true expectation and the first-

order approximation can be written as

E[z̃] − h(f(x)) =
h′′(y)

2!
σ2

v +
h(4)(y)

4!
3σ4

v+

h(6)(y)

6!
15σ6

v +
h(8)(y)

8!
105σ8

v + . . .

Note that for the unscented transformation, the errors only

show up in sixth and higher-order terms in the Taylor series.

Also, the higher-order errors are scaled. If the sixth and higher-

order even terms in the Taylor series of h(·) are identically

zero, then the unscented transformation approximation is an

exact representation of the true expectation. Therefore, the

proposed unscented transformation based approach better ap-

proximates E[z̃] for x = x̃. Thus, we expect that the unscented

transformation yields better estimates when compared to the

traditional first-order approximation based approach.

From lemma 1, as N → ∞, the optimal solution that

minimizes the cost function in (14) is obtained when

E[z̃] −
{

2

3
h(f(x)) +

1

6
h(f(x) +

√
3σv)

+
1

6
h(f(x) −

√
3σv)

}∣

∣

∣

∣

x=x̂2

= 0

(16)

where x̂2 denotes the x that minimizes (14). Note

E[z̃] − 2

3
h(f(x̂2)) −

1

6
h(f(x̂2) +

√
3σv) − 1

6
h(f(x̂2) −

√
3σv)

=h′(ŷ2)E [(∆y2 + v)] +
h′′(ŷ2)

2!
E

[

(∆y2 + v)2 − σ2
v

]

+

h′′′(ŷ2)

3!
E

[

(∆y2 + v)3
]

+
h(4)(ŷ2)

4!
E

[

(∆y2 + v)4 − 3σ4
v

]

+
h(5)(ŷ2)

5!
E

[

(∆y2 + v)5
]

+ . . . ,

where ŷ2 = f(x̂2) and ∆y2 = f(x̃) − f(x̂2). Since v is

assumed to be zero mean, ∆y2 can be factored from the odd

terms in the Taylor series, i.e.,

h′(ŷ2)E [(∆y2 + v)] = ∆y2h
′(ŷ2)

h′′′(ŷ2)

3!
E

[

(∆y2 + v)3
]

= ∆y2
h′′′(ŷ2)

3!

{

∆y2
2 + 3σ2

v

}

h(5)(ŷ2)

5!
E

[

(∆y2 + v)5
]

= ∆y2
h(5)(ŷ2)

5!

{

∆y4
2 + 10∆y2

2σ
2
v

+ 15σ4
v

}

h(7)(ŷ2)

7!
E

[

(∆y2 + v)7
]

= ∆y2
h(7)(ŷ2)

7!

{

∆y6
2 + 21∆y5

2σ
2
v

+ 105∆y2
2σ

4
v + 105σ6

v

}

...

Also note that ∆y2 can be factored from the first two even

terms in the Taylor series, i.e.,

h′′(ŷ2)

2!
E

[

(∆y2 + v)2 − σ2
v

]

=
h′′(ŷ2)

2!
∆y2

2

h(4)(ŷ2)

4!
E

[

(∆y2 + v)4 − 3σ4
v

]

=
h(4)(ŷ2)

4!

{

∆y2
2 + 6σ2

v

}

∆y2
2

Therefore, if the sixth and higher-order even terms in the

Taylor series are identically zero, then the optimality condition

given in (16) yields ∆y2 = 0. Now if the mapping f(·) is

assumed to be one to one [9], then

∆y2 = 0 ⇒ x̂2 = x̃

Thus, the proposed approach asymptotically yields unbiased

estimates if the sixth and higher-order even terms in the Taylor

series of h(·) about ŷ2 are identically zero.

3



In general, the optimality condition given in (16) can be

written in summation form as

J2(∆y2) =
∞
∑

k=1

{

h(2k−1)(ŷ2)

(2k − 1)!
E

[

(∆y2 + v)2k−1
]

+

h(2k)(ŷ2)

(2k)!
E

[

(∆y2 + v)(2k) − {
√

3σv}2k

3

]

}

= 0

(17)

Let x̂1 denotes the optimal x that minimizes (11). Now for

the optimal solution that minimizes the cost function in (11)

is obtained when

J1(∆y1) =

∞
∑

k=1

{

h(2k−1)(ŷ1)

(2k − 1)!
E

[

(∆y1 + v)2k−1
]

+

h(2k)(ŷ1)

(2k)!
E

[

(∆y1 + v)2k
]

}

= 0

(18)

where ŷ1 = f(x̂1) and ∆y1 = f(x̃) − f(x̂1). Both optimality

conditions given in (17) and (18) do not yield an unbiased so-

lution, unless further constraints are placed on even derivatives

of h(·), as mentioned earlier, i.e.,

J1(0) 6= 0 & J2(0) 6= 0.

An optimality condition that yields unbiased estimates can be

written as

J ∗(∆y) =
∞
∑

k=1

{

h(2k−1)(y)

(2k − 1)!
E

[

(∆y + v)2k−1
]

+

h(2k)(y)

(2k)!
E

[

(∆y + v)2k − E[v2k]
]

}

(19)

Note that J ∗(0) = 0, i.e., J ∗(∆y) has a root at the origin.

Now subtracting J ∗(∆y) from J1(∆y) yields

J1(∆y) − J ∗(∆y) =

∞
∑

k=1

h(2k)(y)

(2k)!
E[v2k] (20)

=

∞
∑

k=1

h(2k)(y)

(2k)!
(2k − 1)!!σ2k−1

v

Also, subtracting J ∗(∆y) from J2(∆y) yields

J2(∆y) − J ∗(∆y) =
∞
∑

k=1

h(2k)(y)

(2k)!

{

E[v2k] − {
√

3σv}2k

3

}

(21)

Since the measurement noise v is zero mean Gaussian, the

first two terms of the Taylor series in (21) vanishes so that:

J2(∆y)−J ∗(∆y) (22)

=

∞
∑

k=3

h(2k)(y)

(2k)!

{

(2k − 1)!! − {
√

3}2k

3

}

σ2k
v

Note that equations (20) and (21) can be written as

J1(∆y) − J ∗(∆y) = E[z̃] − h(f(x))

J2(∆y) − J ∗(∆y) = E[z̃] − 2

3
h(f(x)) − 1

6
h(f(x) +

√
3σv)

− 1

6
h(f(x) −

√
3σv)

All terms in (22) are all smaller than the corresponding terms

in (20). Certainly, as the noise variance goes to zero, both

J1 and J2 are converging to J ∗ for all value of ∆y. As

the noise variance fall below unity, |J ∗(∆y) − J2(∆y)| ≤
|J ∗(∆y) − J1(∆y)| because of the first two terms in (20)

that vanish in (22) and the magnitude of all terms in (22) are

less than those in (20). Furthermore, it is reasonable to expect

that for most cases, the root of J2 occurs closer to the root

of J ∗, which happens to be closer to zero than the root of

J1. The intuition is that J2 is simply a closer surrogate to J ∗

than J1. In short, ∆y2 that satisfies the optimality condition

(17) is less than the ∆y1 that satisfies the optimality condition

in (18), i.e.,

|∆y2| ≤ |∆y1|

Now we have

|f(x̃) − f(x̂2)| ≤ |f(x̃) − f(x̂1)| (23)

In general, the inequality condition (23) does not always imply

x̂2 is more accurate than x̂1, i.e.,

|f(x̃)− f(x̂2)| ≤ |f(x̃)− f(x̂1)| ; |x̃− x̂2| ≤ |x̃− x̂1| (24)

The superiority of the proposed approach can be obtained

if one assumes x̂1 and x̂2 are within an interval, [−δ, +δ],
centered about x̃ and the function, f(·), can be linearly

approximated in that interval.

Table I
SUMMARY OF UNSCENTED LEAST SQUARES APPROACH

Signal z̃j = h (f(x̃) + vj)

vj ∼ N (0, R), j = 1, . . . , N

UT Y0 = f (x) , W0 = κ/(m + κ)

Yi = f (x) ±
(

√

(m + κ)R
)

i
;

Wi = κ/{2(m + κ)}

Zi = h (Yi)

ẑ(x) =
2m
∑

i=0

WiZi

LS arg min
x

J(x) =
1

2N

N
∑

j=1

{z̃j − ẑ(x)}T {z̃i − ẑ(x)}

A summary of the proposed approach for an m-dimensional

scenario is given in Table I. The first step in un-

scented transformation involves obtaining the 2m + 1 sigma

4



points, {Y0, Y1, . . . , Y2m}, and the corresponding weights,

{W0, W1, . . . , W2m}. The individual sigma points are then

transformed through the nonlinear function to obtain the

corresponding Zi. Finally, ẑ(x) is obtained as the weighted

sum of the transformed sigma points.

III. NUMERICAL SIMULATIONS

Performance of the unscented least squares approach is eval-

uated through detailed numerical simulations. Three different

simulations are presented here.

A. Simulation I

For the first simulation, we consider the following one-

dimensional example.

ỹj = x̃ + vj , j = 1, . . . , 10

z̃j = exp(ỹ2
j )

The measurement noise is selected to be vj ∼ N (0, 0.3) and

the truth is selected to be x̃ = 0.1/π. The cost function for

the least squares is

J(x) =
1

2N

N
∑

i=1

{

exp((x̃ + vj)
2) − ẑ(x)

}2
(25)

The problem is solved using three different approaches. The

first two approaches use the traditional least squares approach,

i.e., ẑ(x) = exp(x2). The third approach uses the proposed

unscented transformation based approach. In the first ap-

proach, the optimization problem in (25) is solved using the

Gauss-Newton method [10]. The second approach uses the

Nelder-Simplex algorithm [11], i.e., the fminsearch function in

Matlab. The third approach also uses the fminsearch function

to solve the optimization problem obtained from the proposed

unscented transformation based scheme.

Results obtained from 100 Monte-Carlo runs are presented

in figure 1. The estimation error presented in figure 1(a)

indicates that the unscented transformation based approach

(UT) yields better results when compared to the traditional ap-

proach. Note that the unscented transformation based approach

exhibits an error floor of ≈ 0.0318 in figure 1. This error

floor is obtained when x̂ = 0 and it is due to the ambiguity

in the nonlinear least squares problem presented. Figure 1(a)

also indicates that the iterative least squares approach and

the simplex algorithm yield the same estimation error for the

traditional approach. The sensitivity of the cost function, or J ,

to the noise intensity is presented in figure 1(b). Clearly, the

traditional cost function is more sensitive to the noise intensity

when compared to the proposed approach. Numerical values

for the mean and standard deviation of the estimation error as

well as the mean and standard deviation of the minimum J
are given in Table II. The table indicates that the unscented

approach is superior because it produces a less biased estimate.

On the other hand, the variance of the error is comparable for

the two approaches.
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Figure 1. Simulation I: Estimation Error & Noise Sensitivity of Cost Function

Table II
SIMULATION I: MONTE-CARLO RESULTS

Traditional Traditional Proposed

Iterative fminsearch fminsearch

Mean Error 0.2752 0.2752 0.0835

Error Stdv 0.0796 0.0796 0.0812

Mean Cost 0.3091 0.3091 0.3190

Cost Stdv 0.5509 0.5509 0.5462

B. Simulation II

For the second simulation, we consider the following two-

dimensional example.
[

ỹ1

ỹ2

]

j

=

[

x̃1

x̃2

]

j

+

[

v1

v2

]

j

, j = 1, . . . , 20

[

z̃1

z̃2

]

j

=

[ √

ỹ2
1 + ỹ2

2

exp(ỹ1) + exp(ỹ2)

]

j

The measurement noise is selected to be v ∼
N (0,

[

0.007 0
0 0.1

]

) and the truth is x =

[

0.023
0.038

]

.
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Figure 2. Simulation II: Estimation Error & Error Norm

For the second simulation, the results obtained from the

Monte-Carlo runs presented in figure 2 indicate that the un-

scented transformation based approach yields a better estimate

when compared to the traditional approach. Figure 2 also

indicates that the iterative least squares approach and the

simplex algorithm yield a similar estimation error for the tra-

ditional approach. Again, the UT exhibits superior estimation

performance due to smaller bias.

C. Simulation III

The third simulation considers the practical problem of

sniper localization using multiple gunfire detection sys-

tems [12], [13]. The shooter or the target location and the ith

sensor location are defined as T and Si, respectively. For sim-

plicity, the problem is formulated in ℜ2, i.e., T ∈ ℜ2 ≡
[

Tx

Ty

]

and Si ∈ ℜ2 ≡
[

Six

Siy

]

. Now we define the individual range,

ri, and bearing, φi, between the ith sensor node and the target

as

ri =

√

(Tx − Six
)2 +

(

Ty − Siy

)2
(26)

φi = arctan2
(

Ty − Siy
, Tx − Six

)

(27)

Figure 3 illustrates the geometry of the shockwave and the
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Figure 3. Schematic Representation

muzzle blast for the ith sensor node when the orientation of

the bullet trajectory is ω with respect to the horizontal axis.

Here the angle φi indicate the direction of arrival (DOA) of

the muzzle blast, ϕi indicate the DOA of the shockwave, and

the shockwave cone angle θ is defined as

θ = arcsin

(

1

m

)

(28)

where m is the Mach number. The Mach number is assumed to

be known since the typical value for Mach number is m = 2.

For more detailed description of the scenario, please refer to

[12]. Now the DOA angle for the shockwave can be written

as

ϕi =

{

−π
2 − θ + ω, if π + ω < φi < −π

2 − θ + ω;
π
2 + θ + ω, if π

2 + θ + ω < φi < π + ω.
(29)

The first case π + ω < φi < −π
2 − θ + ω corresponds to the

scenario where the sensor is located above the bullet trajectory

and the third case π
2 + θ + ω < φi < π + ω corresponds

to the scenario where the sensor is located below the bullet

trajectory. The second case φi = π + ω corresponds to the

scenario when the sensor is located on the bullet trajectory,

and such a scenario is not considered here.

Under the assumptions that the bullet maintains a constant

velocity over its trajectory, the time difference between the

shockwave and the muzzle blast can be written as [14], [15]

τi =
ri

c
[1 − cos |φi − ϕi|] (30)

When the sensor node is within the field of view (FOV) of the

shockwave, the three available measurements are the two DOA

angles and the time difference of arrival (TDOA) between the

muzzle blast and the shockwave, i.e.,

φ̂i = h1 (T, Si, ω) + ηφ (31)

ϕ̂i = h2 (T, Si, ω) + ηϕ (32)

τ̂i = h3 (T, Si, ω) + ητ (33)

where h1(·) is given in (27), h2(·) is given in (29) and

h3(·) is given in (30). The measurement noise is assumed
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to be zero mean Gaussian white noise, i.e., ηφ ∼ N (0, σ2
φ),

ηϕ ∼ N (0, σ2
ϕ), and ητ ∼ N (0, σ2

τ ). After obtaining the

measurements at each sensors, the sensor range and bearing

to the target it calculated as follows:

φ̂i = φ̂i (34)

r̂i =
cτ̂i

[

1 − cos
∣

∣

∣
φ̂i − ϕ̂i

∣

∣

∣

] (35)

Individual bearing and range information is then relayed to the

central node where it is fused along with the sensor locations

to yield an accurate sensor location. These information sources

are related to the unknown parameters T and ω by a nonlinear

transformation that changes for each sensor due the changes

in the sensor location (see (31)-(33)). In fact for range, the

angular measurement errors falls inside the nonlinear function

in (35). For numerical simulation presented here, we consider

the scenario presented in figure 4. Measurement noise models
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Figure 4. Simulation Scenario

are selected as σφ = σϕ = 4o and στ = 1msec.

Figures 5(a) and (b) show the individual sensor estimates

of the shooter location as well as the fused estimates and

the corresponding error ellipses for both the traditional and

the unscented transformation approaches. Note that for both

approaches, the fusion algorithm provides an estimate that is

superior to the individual sensor estimates. Also, note that the

fused estimate obtained from the proposed approach is closer

to the truth. Numerical values for the true shooter location as

well as the estimated locations obtained from both approaches

and the corresponding root-mean-square-error (RMSE) are

given in Table III. For this scenario, the UT again provides

an estimate with smaller bias than the traditional approach.

In fact, the error ellipse for the UT approach is smaller than

that of the traditional approach. Unlike the prior scenarios,

the performance improvement from the UT can be attributed

to both reduction in the bias and standard deviation of the

error.
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Figure 5. Simulation III: Estimation Error Ellipse from Monte-Carlo Runs

Table III
SIMULATION III: MONTE-CARLO RESULTS

x y

Truth 50 50

Trad. Fused 39.7429 50.1127

UT. Fused 58.5026 50.9283

Trad. RMSE 49.1189 5.8610

UT. RMSE 37.7813 5.4535

IV. CONCLUSION

This manuscript provides an unscented approach to the non-

linear least squares problem that arises in decentralized fusion.

In decentralized fusion, measurements are first processed at

the sensor node before they are relayed to the central node.

Due to the signal processing conducted at the sensor node,

7



one might lose the additive nature of the measurement noise.

The proposed unscented transformation based approach helps

to tackle the non-additive nature of the noise in the nonlinear

least squares problem. Utilizing the information regarding the

noise characteristic, the proposed approach yields superior

estimates when compared to results obtained from the tra-

ditional least squares approach. Simulation results presented

here indicate that unitizing the unscented transformation helps

to alleviate the cost sensitivity to the measurement noise. Also,

the unscented transformation helps to move the minimum

cost corresponding to the optimal solution toward the cost

associated with the zero estimation error and thus improves

the estimates.
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APPENDIX I

The unscented transformation is a method for approximat-

ing, in a computationally efficient manner, the statistics of

a random variable that undergoes a nonlinear transformation.

The basic principle behind unscented transformation is that

it is easier to approximate a probability distribution than an

arbitrary nonlinear function [8]. Consider an n-dimensional

random variable, x, with mean x̄ and covariance Px. A second

random variable y is related to x through the nonlinear

function

y = h(x)

To calculate the statistics of the y using the unscented trans-

form, we proceed as follows: First, a set of 2n + 1 weighted

samples or sigma points Si = {Wi, X i} are deterministically

chosen so that they completely capture the true mean and

covariance of the prior random variable x. A selection scheme

that satisfies this requirement is

X 0 = x̄, W0 = κ/(n + κ)

X i = x̄ +
(

√

(n + κ)Px

)

i
, Wi = κ/{2(n + κ)},

i = 1, . . . , n

X i = x̄−
(

√

(n + κ)Px

)

i
, Wi = κ/{2(n + κ)},

i = n + 1, . . . , 2n

(36)

where κ is a scaling parameter and
(

√

(n + κ)Px

)

i
is the ith

row or column of the matrix square root of (n + κ)Px. The

weights are selected so that

2n
∑

i=0

Wi = 1

If x is Gaussian, then selecting κ such that (n + κ) = 3
minimizes the mean-squared-error up to the fourth order [16].

However, when κ is negative, then there exists a possibility

that the predicted covariance can become a non-positive semi-

definite. If this is of concern, then another approach can be

used that allows for scaling of the sigma points, which guar-

antees a positive semi-definite covariance matrix [17]. Sigma

point are then propagated through the nonlinear function

Yi = h(X i), i = 0, . . . , 2n (37)

and the estimated mean and covariance of y are computed as

follows

ȳ =

2n
∑

i=0

WiYi (38)

Py =

2n
∑

i=0

Wi (Yi − ȳ) (Yi − ȳ)
T

(39)

These estimates are accurate to the second (third order for

Gaussian priors) of the Taylor series expansion of h(·) for

any nonlinear function. Errors introduced in the higher-order

terms are scaled by the choice of the parameter κ.
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